
Conor Gagliardi ML A4 Writeup
Q1)

Ls is a linear model with a single layer, whereas LrLs and L2s each have two layers.
LrLs with a learning rate of 0.5 and L2s with learning rates of 0.5 and 0.25 are of interest. These
results indicate that the models failed to converge with the specified learning rates, resulting in
an accuracy of approximately 10% (possibly picking 0 by default when not converging, which
may account for 9.8% of the testing data in this instance). The models failed when the learning
rate was increased because the number of parameters used were greater than in Ls. To
account for the higher number of parameters, Charniak wrote, “to reflect the larger number of
parameters, we need to lower the learning rate by a factor of 10.” Also said in Wk9-Lecture1, it
is preferable to begin with a lower learning rate because an excessively high learning rate will
result in “jumps into distant parts of loss function space and not follow the loss surface.” In light
of this, it is evident that a "sweet spot" for the learning rates was 0.5 for Ls, 0.25 for LrLs, and
0.125 for L2s was the only one of the three that succeeded. L2s only worked with the lowest
learning rate because, in the absence of an activation function (RELU in these linear examples)
the implicit calls to compute the forward pass are effectively performing two forward passes for
every one backward pass (like LrLs) without an activation function in between. The first of which
has more parameters than LS, and with larger learning rates, this causes the gradient to jump
into distant regions of the loss function space. Charniak also described how the two-layer
solution without an activation function could be implemented with a single layer due to matrix
math properties, therefore the resulting accuracy of Ls and L2s will be fairly similar. LrLs has the
highest accuracy because additional layers permit increasingly complex data generalization
approximations (The difference of using a single line to identify a number vs. 2 lines in this
case).

Ls takes the least amount of time due to its single forward pass and lack of activation
function application (less math operations than the others). Both two-layer models have more
initial parameters. L2s calculates two forward passes and joins the results with matrix
multiplication, resulting in approximately double the time required by Ls plus a little amount of
additional time for matrix multiplication. Lastly, LrLs applies a RELU in addition to two layers of
operations, causing it to take the most time. Between different learning rates, each model takes
roughly the same amount of time, differing slightly by learning rates affecting time needed to
converge (or not converge).

Q2)

As the number of batches grows, the trend in accuracy is also growing. 1000 is the
default number of batches. Comparing convolutional models to linear models involves
comparing the column of 1000 batches to the table column learning rate of 0.125 for the linear
model. In this instance, the model with the highest performance is CrCLs, followed by LrLs,
CrLs, L2s, and Ls. In general, however, the convolutional models yielded greater accuracy than
the linear models.

The parameters of the models CrLs and Ls have “essentially remained constant”
different by roughly 64 due to the weights from the filters in CrLs The weights in the first layer of
each is set to be 784 x 10. LrLs and L2Ls have the most parameters because they are dense
networks in which every node in one layer is connected to every node in the following layer.
Additionally, the initialization of the first layer in double linear models is 784 x 784, which is the
largest initialization of any model. CrCLs uses more parameters than CrLs but less than LrLs
and L2Ls. Its initialized starting weight was 1568 x 10. Each model's trainable parameters were
calculated as follows: Ls-8,634 LrLs-624,858 L2s-624,858 CrLs-8,728 (+10 because the bias is
not kept in a tf.Variable) and CrCLs-19,706 (+10 for the same reason). These results validate
the estimated parameters. Despite the differences in parameters, Convolutional models took
consistently longer to train due to the use of multiple filters which are used to split up the data
into nearby areas, specifically, the area of the kernel calculations.. Each increase of double the
number of batches intuitively doubled the total time taken for training. The roughly doubling of
the parameters from CrLs to CrCLs along with the additional network layer, and adding the max
pooling function, resulted in the time taken being about triple.

Q3)

The average accuracies and time taken are consistent with previous models overall.
Compared to specific hyperparameters from the average of the 3 round test (1000 batches,
0.125 learning rate, 1 round), Ls differs by 0.47%, LrLs differs by 0.72 %, L2s fails to converge
with 3 rounds, CrLs differs by 2.26%, and CrCLs differs by 0.51%. When comparing the
minimum accuracy from the 3-round test, which reflects the first round in every case, the
accuracies are similar with minor variations due to tensorflow reshuffling the testing data (for
linear models, the minimum accuracy is identical because they aren't using reshuffled tests).
Due to three rounds of training as opposed to one cycle for the prior tests, all execution timings
are approximately three times longer than those of the individual model tests.

The variance across multiple rounds is due to the fact that the accuracy of all models is
lowest in the first round and increases with each subsequent round. For CrLs, the improvement
in accuracy was the largest, resulting in the greatest standard deviation. This relates to the
amount of training necessary for a model to approach its best estimate of data generalization.
The models with the smallest standard deviation are the most stable. The most stable model is
CrCLs, which improves its accuracy the least per round. As the number of rounds increases and
the model's accuracy subsequently increases, the standard deviation would decrease as more
results neared the model's peak accuracy. However, if the number of rounds causes overfitting,
the accuracy may decrease, leading the standard deviation to increase.

Bonus) Re-do Q2 experiment

In this experiment for fashion_mnist the dependent variable was the number of batches.
Independent variables were the models used (CrLs, and CrCLs), Learning rate (0.125), number
of rounds (1), and the random seed (7 - apparently it’s lucky). Similarly to question 2, as the
number of batches increased the resulting accuracy of either model increased. Unlike regular
MNIST, Fashion_MNIST appears to be more ambiguous and It is likely difficult to get scores that
approach regular MNIST accuracy scores. This is likely due to the complexity of information
from an article of clothing versus a 2d drawn number.

Similar to question 2, the CrCLS takes proportionally the same amount of time more than
CrLs (“The roughly doubling of the parameters from CrLs to CrCLs along with the additional
network layer, and adding the max pooling function, resulted in the time taken being about
triple.”). Additionally, the number of batches is proportionally adding batches to calculating,
adding time for every extra batch calculation.

If I were to repeat this experiment, I would estimate that adding additional rounds of
testing in addition to a large batch size would yield the best accuracy.]

