CSCI 335 Machine Learning: Group Project

C. Gagliardi, J. Alvarado, M. Richmond

1.

Task Definition, Evaluation Protocol, and Data

Task: Implement a model to classify encrypted network traffic into 15 application classes
using byte vectors as input features. The byte vectors are extracted from the first 1480
bytes from the IP payload in the traffic captures for each application in the dataset. The
reference paper used to implement this task is Deep Packet [1].

Data Set: Utilizes the University of New Brunswick, VPN-nonVPN dataset [2]. The
captured packets in this dataset are separated into different Packet Capture (PCAP)
files. The files are labeled according to the

skype I application that generated the packets, such

:acebofik I as Skype or Hangout.The original
Voif)r;%zﬁei I DeepPacket paper utilized a massive 26GB
SFTP data set from the university of New
scp [N B ick_due to hard limitati
Youtube [runswick, due to hardware limitations we
Email I were unable to utilize this full dataset and
,\\I’g‘fﬁi = instead used a reduced version of this data
Fres set.
Spotify Il
Gmail B .
AIM Chat I Figure 1: Number of samples for each
icQ | application class [2].
0 50K 100K 150K

Number of samples
Metrics: Performance measured using

Recall(Rc), Precision(PR), and F1 Score(F1).
These are calculated with the values of True Positive(TP), False Positive(FP), and False
Negative(FN).[1]

TP TP 2-Rc:Pr
1=

Rc=—_, Pr= ——, -
TP + FN TP + FP Rc + Pr

Rc measures the proportion of actual positive instances that the model correctly predicts.
A high recall means that the model is good at avoiding false negatives and is reliable for
detecting positive instances.

Pr is a measure of the accuracy of a model's positive predictions. It indicates the
proportion of predicted positive instances that are actually positive. A high precision
means that the model is good at avoiding false positives and is reliable for making
positive predictions.

F1 is a metric that combines precision and recall into a single score. It is calculated as
the product of precision and recall divided by the sum of precision and recall. A high F1
score indicates that a model is making both accurate and complete predictions on a
classification task.

Neural Network Machine Learning Model
Base Learning model:

Deep Packet [1] uses a one-dimensional Convolutional Neural Network (CNN). The
model consists of two consecutive convolutional layers, followed by a max pooling layer.
Next, the two-dimensional tensor is flattened into a one-dimensional vector and passed
through three fully connected hidden layers with a dropout technique to avoid
over-fitting. All layers employ Rectified Linear Unit (ReLU) as the activation function,
except for the final softmax classifier layer. Categorical cross entropy and Adam were
used as a loss function and optimizer, respectively. Categorical cross entropy measures
the difference between the predicted probability distribution and the true probability
distribution for each class. ADAM uses an adaptive learning rate to efficiently train the
model. It adjusts the learning rate for each parameter, allowing the model to converge
faster and with better results than traditional gradient descent. The network uses early
stopping technique [3] to avoid overfitting the training data; in other words, the training
stops when the loss function remains unchanged for several epochs on the training data.

Convolutional Layer Convolutonal Layer Flatten
C1 c2 I
I;' hd
—— N
' T+] 1 Ry
[| - - e — e W iy
Byte-vectonzed —— : —ri]
Packet I'II
Max Pooling ' Softmax
Classifier

Figure 2: One-dimensional CNN architecture used for
application classification model.

Experimental changes to be applied and compared:

The existing model uses Random Undersampling as a class balancing method. This
algorithm randomly reduces the samples of all classes until they have the same number
of samples as the minority class. The dataset used for the experiment has ICQ as the
minority class with ~2700 samples; this means that all the other classes are reduced to
the same number of samples as ICQ.

Skype Skype
Facebook Facebook
Hangouts Hangouts
Voipbuster Voipbuster
SFTP SFTP
SCP SCP
Youtube Youtube
Email Email
Vimeo Vimeo
Netflix Netflix
FTPS FTPS
Spotify Spotify
Gmail Gmail

AIM Chat AIM Chat |l

ICQ IcQ |

0 50K 100K 150K 0 50K 100K 150K
Number of samples Number of samples

Figure 3: [Left] Red line showing the cutting point for Random Under-Sampling
on training data. [Right] Red line showing a new cutting point after applying
SMOTE and Random Under-Sampling on training data.

The proposed experiment on the model uses Synthetic Minority Over Sampling
Technique (SMOTE)[5] as a class balancing method. This algorithm uses k-Nearest
Neighbors to construct spatial relationships between samples of a given class. Then, it
randomly selects a region encompassing its k-nearest neighbors and projects the feature
space using the euclidean distance to construct a synthetic data point that can be used
to increase the number of samples of the minority classes.

Experiment

Research question: What is the effect of using SMOTE (Synthetic Minority Over
Sampling Technique) to generate synthetic samples for training the CNN model for
application classification.

3.1. Design
Independent Control Dependent
variables variables variables
SMOTE on Training data split Testing data split Recall,
Precision,
Hyper-parameters: CNN hyper-parameters: F1 Score
. C1 Filter
- Minority classes (c): 2 Tosk Size | Number | Stride
- Nearest Neighbors (k): 5 App. 1dn. 1 200 3
- Amount of SMOTE (n): Traffic Char. B 200 3
1,2, 3, 4]
2 Filter
SiEe Numbeor Stride
5 200 1
1 200 3
- Training with early stopping Training time,
Technique Number of
- Activation function: ReLU epochs to
- Loss function: Categorical converge
cross entropy
- Output layer function:Softmax
- Optimization function: Adam

Hypothesis : Increasing the n parameter in SMOTE will result in a more balanced
dataset causing the model to have a lower number of false negatives and a higher
amount of true positives (better Precision, Recall, and F1 Scores.

3.2 Methodology

The codebase used was a deep convolutional neural network based on the Deep Packet
paper [1]. A pytorch implementation base implementation was branched and can be
accessed here https://github.com/munhouiani/Deep-Packet.

Data preprocessing is done to remove packet headers and timestamps from the pcap’s
using the preprocessing.py class This is not necessary since our repo at
https://github.com/jja6522/Deep-Packet/ contains a zip file containing the processed
captures we used. A second processing step is needed to create the test and train
datasets along with doing SMOTE to synthesize new data points. The argument pattern
for this is outlined on the github page along with some examples below.

The code we wrote was only inside of the create_train_test_set.py file. This is where we
added the necessary functions to add SMOTE. We also changed the number of
arguments that the script accepted to allow for k and n, variables used for SMOTE, to be
easily adjusted from the command line.

Baseline algorithm: CNN model with undersampling only
Experimental algorithm: SMOTE data preprocessing used with the baseline algorithm
and conditions for one variable are changing the n parameter from SMOTE from 1 to 5.

To run the experiment, first the data must be preprocessed using undersampling or
SMOTE + undersampling for each n value. The testing and training data is created
during this step, named based on the usage of SMOTE and its n value.

example) python create_train_test_set.py -s
/home/stu15/s1/cgg3724/mli2022/project1/Deep-Packet/processed_small/ -t
/home/stu15/s1/cgg3724/mi2022/project1/Deep-Packet/train_data_out _n4 k5/ --test
/home/stu15/s1/cgg3724/mi2022/project1/Deep-Packet/test_data_out_n4_k5/
--class_balancing SMOTE+under_sampling -n 4 -k 5

Next the CNN model is trained on the training data.

example) python train_cnn.py -d
/home/stu15/s1/cgg3724/mi2022/project1/Deep-Packet/train_data_out n2_k5/applicatio
n_classification/train.parquet/ -m
model/application_classification.cnn.model.SMOTE.n2k5 -t app

Finally the model is tested on the testing data.

example) python test_cnn.py -d
/home/stu15/s1/cgg3724/mi2022/project1/Deep-Packet/test_data_out_n1_k5/application
_classification/test.parquet/ -m model/application_classification.cnn.model.SMOTE.n1k5

-t app

https://github.com/munhouiani/Deep-Packet
https://github.com/jja6522/Deep-Packet/

Experimental Results and Discussion

The baseline model for the experiment was isolated, re-trained and tested with a
reduced data sample due to computational limitations. This model used random
undersampling as a class balancing technique applied on the training data. The metrics

used to evaluate the model performance were summarized in a precision-recall curve as
shown in Figure 4.

The experimental model was modified to include a preprocessing step to apply
SMOTE and Random undersampling to balance the class distribution. The metrics used

to evaluate the model performance and compare it with the baseline were summarized in
Figure 4.

The minority classes that were synthetically oversampled were AIM Chat and
ICQ; the number of samples for those two classes was increased from 3132 and 2788 to
6189 and 5477, respectively. The classification model was re-trained with that enhanced

training split and tested with the base test split used in the experiment as a control
variable.

. . Multi-Class Precision(Pr)-Recall(Rc) curves / F1-Score
Multi-Class Precision(Pr)-Recall(Rc) curves / F1-Score (Pr) (Ra) /
1.0 1o
0.8 0.8
— AIMChat : (Pr=0.46, Rc = 0.91, F1 = 0.61) —— AIM Chat :(Pr = 0.42, Rc = 0.89, F1 = 0.57)
06 Email :(Pr=0.56, Rc = 0.95, F1 = 0.71) 06 Efpall iEnSI055, ReiSI09d [FL=,0.69)
£~ — Facebook :(Pr=0.93,Rc =009, Fl=0091) 5 — Facebook :(Pr=10.93,Rc =09, F1=0092)
@ — FTPS :(Pr=0.98, Rc = 0.99, F1 = 0.98) 2 — FTPS :(Pr=0.98, Rc = 0.99, F1 = 0.98)
o —— Gmail : (Pr = 0.6, Rc = 0.95, F1 = 0.74) [—— Gmail : (Pr = 0.61, Rc = 0.95, F1 = 0.74)
@ . .95,)
& —— Hangouts : (Pr=0.98, Rc = 0.9, F1 = 0.94) o —— Hangouts : (Pr = 0.98, Rc = 0.89, F1 = 0.94)
04 IcQ : (Pr = 0.56, Rc = 0.95, F1 = 0.71) 04 icQ (Pr = 0.65, Rc = 0.93, F1 = 0.77)
—— Netflix :(Pr=0.98, Rc = 0.98, F1 = 0.98) —— Netflix :(Pr=10.97, Rc = 0.99, F1 = 0.98)
SCP (Pr = 0.98, Rc = 0.96, F1 = 0.97) SCP (Pr =0.98, Rc = 0.96, F1 = 0.97)
—— SFTP : (Pr=0.99, Rc = 0.99, F1 = 0.99) — SFY : (Pr=0.99, Rc = 0.99, F1 = 0.99)
—— Skype :(Pr=0.96, Rc = 0.82, F1 = 0.88) — Skype +(Pr=0.96, Rc = 0.82, F1 = 0.89)
0.2 Spotify : (Pr=10.81, Rc = 0.96, F1 = 0.88) 0.2 Spotify : (Pr = 0.81, Rc = 0.97, F1 = 0.88)
— Vimeo :(Pr=0.94, Rc =0.97, F1 = 0.95) — Vimeo :(Pr=0.93, Rc = 0.97, F1 = 0.95)
—— Voipbuster : (Pr = 0.99, Rc = 0.99, F1 = 0.99) —— Voipbuster : (Pr=0.99, Rc = 0.99, F1 = 0.99)
— Youtube :(Pr=0.97, Rc = 0.97, F1 = 0.97) —— Youtube : (Pr =0.96, Rc =0.98, F1 = 0.97)
Wtd. Average: (Pr = 0.91, Rc = 0.93, F1 = 0.92) Wtd. Average: (Pr = 0.91, Rc = 0.93, F1 = 0.92)
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Recall Recall

Figure 4: [Left] Precision-Recall curves for the base model with Random
Undersampling. [Right] Precision-Recall curves for the experimental
model with SMOTE and Random Undersampling applied
(hyper-parameters: ¢ = 2, n =2, k =5).

Below the subsequent list of results obtained for SMOTE with undersampling using the
proposed list of hyperparameters for the experiment: c =2, n = [2, 3, 4, 5], k =5 (left to
right, top to bottom).

Discussion:

The previous tables show the results of changing the n parameter of SMOTE
used with a CNN model for network traffic. The n value determines the number of
synthetic data points generated for each sample in the minority class of an imbalanced
dataset. Increasing the n value leads to more synthetic samples being generated, which
can improve the balance of the dataset and potentially improve the performance of the
CNN model. However, a larger n value can also lead to overfitting, as the model is
trained on a higher proportion of synthetic samples that may not generalize well to
unseen data. The k value is the number of nearest neighbors used to create a synthetic
datapoint between.

In this experiment, the use of SMOTE generally improved the overall scores of
the model, though in some classes the scores decreased slightly such as traffic from

ICQ which had the highest recall score of 0.95 without SMOTE. The baseline weighted
averages without SMOTE were Rc = 0.91 Pr = 0.93 and f1-score = 0.92. SMOTE
applied with an n value of 1 produced weighted averages that saw an improvement from
only undersampling and were Rc = 0.92 Pr = 0.94 and f1-score = 0.93. As the n value
increased from 1 to 3, the recall, precision, and f1 scores generally increased, withn =3
producing the best scores overall which were Rc = 0.94 Pr = 0.95 and f1-score = 0.95.
This indicates that the hypothesis is true because the number of False Negatives and
False Positives lowered, and True Positives raised. However, as n increased from 3 to 5,
the scores began to decrease, indicating that overfitting may have occurred.

The scores of classes that did not have SMOTE-generated data also changed,
likely due to the shift in the overall balance of the dataset caused by SMOTE synthesis.
As the number of synthetic samples increased, the distribution of classes in the dataset
changed, which may have affected the performance of the model on classes without
synthetic data.

The score increases on our minority classes was very low and the weighted
average was almost constant due to decreases in majority class precision, accuracy and
f1 score. This volatility between tests suggests that the randomness from SMOTE may
be the factor that is causing the score increases and not necessarily the larger training
set.

Overall our experiment results were inconclusive. The weighted average for all
three metrics also appears to decline as we increase n beyond 3. The changes in scores
produced by applying different n values did not seem to be a definite confirmation for our
hypothesis. More experimentation is required to answer our research question of
whether or not SMOTE+Undersampling can be used to generate usable training data for
encrypted internet traffic.

5.

References

Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R. et al. Deep packet:
a novel approach for encrypted traffic classification using deep learning. Soft
Comput 24, 1999-2012 (2020). hitps://doi.org/10.1007/s00500-019-04030-2
Implementation: https://github.com/munhouiani/Deep-Packet [1]

Gerard Drapper Gil, Arash Habibi Lashkari, Mohammad Mamun, Ali A. Ghorbani,
"Characterization of Encrypted and VPN Traffic Using Time-Related Features", In
Proceedings of the 2nd International Conference on Information Systems
Security and Privacy(ICISSP 2016) , pages 407-414, Rome, Italy. [2]

Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique."
Journal of artificial intelligence research 16 (2002): 321-357. [3]

Jayanth Sivakumar, Karthik Ramamurthy, Menaka Radhakrishnan, and Daehan
Won. "Synthetic sampling from small datasets: A modified mega-trend diffusion
approach using k-nearest neighbors." Knowledge-Based Systems (2021):
107687. [4]

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016. [5]

Prechelt L (1998) Early stopping-but when? In: Neural Networks: Tricks of the
trade, Springer, pp 55-69 [6]

https://doi.org/10.1007/s00500-019-04030-2
https://github.com/munhouiani/Deep-Packet
https://www.scitepress.org/Papers/2016/57407/57407.pdf

