REU Unmanned Aerial Systems With Real-World Applications in Oklahoma

Vision-Based Control of Unmanned Aerial Systems

Team #1: Osmond Gonzalez & Conor Gagliardi

Research Mentor: Dr. Wei Sun

Technical Mentors: Dr. Merchan-Merchan & Dr. Sun

Outline

Team	pg. 4
Problem Background	pgs. 5-9
Problem Statement	pg. 10
Research Process	pg. 11
What We've Done	pgs. 12-18
Value Added	pg. 19
Research Process (Plans for Future)	pgs. 20-21

Outline Cont.

Items for Project	pg.	22
Broader Impacts of the Research Project	pg.	23
Intellectual Merit of the Research Project	pg.	24
Conclusions	pg.	. 25
Q&A	pg.	26

Teams

Research Mentor

Dr. W. Sun (Co-PI)

FH 237 | (405) 325-3713 Email: wsun@ou.edu

Technical Mentors

Dr. W. Merchan-Merchan (PI)

FH 208 | (405) 325-1754
Email: wmerchan-merchan@ou.edu
Dr. W. Sun (Co-PI)

FH 237 | (405) 325-3713 Email: <u>wsun@ou.edu</u>

Team #1 Members

O.Gonzalez

Email: osmond-gonzalez@raider.rose.edu

C.Gagliardi

Email: cgg3724@rit.edu

Problem Background

- Contemporary drone systems do not typically use multiple sensor fusion to estimate position and orientation in a swarm setting. Nor do they use only monocular cameras.
- Navigation systems typically use complex and "heavy" sensors, which are traditionally difficult to mount on a small drone, and require additional setup.
- Current studies don't focus on use for systems "out of the box."

- A team of agents provides redundancy and allows for a split effort towards mission completion.
- Depending on the specific task, additional agents can reduce the time to completion by half or more.
- Additionally, the use of multiple drones may be able to perform tasks that a single drone could not perform at all.

Definitions:

Leader-Follower System:

A leader is an agent that follows a specific task such as for example following a path and the followers are a swarm of agents that only care about following the leader agent.

Unreal Engine:

Unreal Engine is a physics and graphics platform that Microsoft AirSim uses to simulate how a leader-follower system will behave in our case.

We have the technology

We have the technology

Problem Statement

- The system should facilitate the fusion of each of the agents' single-mounted cameras in order to determine the relative states of each agent.
- Additionally, the swarm shall be able to move as a single unit, which may be based on leader-follower strategies with individual agents that may use flocking algorithms.

Deliverables:

 Design a system that can satisfy a multi-agent drone swarm with vision-based autonomy.

Research Process

What we've done

Successfully set up a drone simulator (Microsoft Airsim)

 Created a code abstraction for manual control of drones as we would control a DJI Tello EDU

Modified the 3D-Model in Unreal Engine to have a easily-trackable green ball

- Used OpenCV to import virtual camera feed for a tracker controller
 - o Determine threshold boundaries, min max radius, for adjusting follower position

Leader-Follower Object Tracking

Leader-Follower Object Tracking Cont.

Value Added

Value to the Project

- Established visual capability for swarm behavior
- Provided a framework that will be useful in visual formation control
- Modular logic transferable to future developments (switching ball detection for drone detection will be "plug-and-play")

Value to the Intern

- Learned how to transfer solutions from simulation to physical implementation
- Experience using perception frameworks
- Gained knowledge of 3D models in Unreal Engine

Research Process (Plan for Future)

Research Process (Plan for Future)

Next Steps...

- Developing controller for >2 agent systems
- Create a formation changing scheme
- Exploring threading and other options for a more seamless controller
- Using machine learning for drone detection and tracking
 - Possibly using some new developments on optical flow and feature tracking

Items for Project

- DJI Tello Edu Drone (x3)
- PC to test drones in Microsoft AirSim
- Laptop capable of running Linux

Broader Impacts of the Research Project

Engineering Experience:

OpenCV, Python, and Microsoft AirSim Experience

Financial Benefits:

Forgo expensive sensor attachments for tasks that don't need them

Environmental Impacts:

Mapping out GPS restricted areas

Reliability/Safety:

- Search and Rescue
- GPS Restricted Areas (Canyons, Dense Forests, etc.)

Intellectual Merit of the Research Project

- Attempting to use existing perception technologies in ways that haven't been extensively developed yet.
 - E.g. Using real time YOLO object detection as a means for follower-pursuit.
- Development of algorithms in a constrained platform would allow for future improvements on a less-constrained system.
 - E.g. If a test with the current setup takes 20 seconds supposedly, a system with more freedom of maneuver would likely be more efficient.
- Modularity of the design could allow multiple different object detection/tracking techniques to be swapped out and tested.

Conclusions

- Difficult problem space, constrained to 1 sensor in one direction
- Drone Limitations
 - limited to six degrees-of-freedom holonomic movements
 - rely on udp network messages for commands (one way message traffic)
- Tracking by object color is unreliable
- Vision based control is becoming more feasible with recent advances in perception algorithms

Q&A