C. Gagliardi

C. Hacker Group Project Research Proposal 8 May 2023
i- If)ot.empio Information Retrieval
. Pais

Retrieval Task

Task: Satisfy the Joint Personalize Search and Recommendation (JPSR) Problem proposed. Inputs are a
set of users, and their interactions (searches and recommendation interactions). Output is a ranked list of
recommendation considering the input.

User Recommendations
RockLover2000 | Top 5 hits: *The Strokes’, ’Snow Patrol’, ’Copeland’, *'The Kooks’, ’Jimmy Eat World’

The difference between a search and recommendation comes from the presence of a query. A search
includes query, while a recommendation does not include one. A model that tackles this problem is to construct
a personalized list of items sorted by relevance based on a user, their interactions, and a possibly empty query.
The idea of joining search and recommendation models makes sense because they have very similar inputs and
goals. Joining them allows us to train these models simultaneously, and with more relevant data, hopefully
increasing performance.

Data Set: The data set used is Lastfm!. Here, listening to a certain artist is considered a recommendation
interaction, and tagging an artist is considered a search interaction. This data set is the smallest, with less than
200,000 training interactions. Contextually, it is limited due to it’s simple queries because of simple tags like
”classical”, or ”alternative”.

Two other datasets were used in the paper, but for convinience of the experiment we use the lastfm
dataset. Each data set has a unique way of defining users, items, queries, and different interactions.

The Point-of-Interest search engine (POI) data set is collected from the South-Korean search engine
Naver?. Six months of total data is collected, from 01,/09/2020 to 07/09/2020. A search interaction happens
when a user clicked an item(page) after issuing a query of keywords. A recommendation interaction happens
when a user clicks on an item without specifying a query.

MovieLens 25m3. This dataset contains user ratings, and taggings of movies. Any user rating is
considered a recommendation interaction, with a cutoff of 44 stars out of 5, being considered a positive
recommendation. All added tags are used as search interactions. This is the largest data set in terms of
interactions, with over 2 million training interactions in total.

Evaluation Metrics Evaluation is split into two sections, Search and Recommendation. Two metrics are used
for evaluation; H@20 and NDCG@20. HitRate at 20 (H@20), measures if a relevant item appears in the top 20
recommendations and search results. Normalized Discounted Cumulative Gain at 20 (NDCG@20), measures
ranking quality for the model’s returned search and recommendation results by normalizing usefulness (gain)
based on the positions of relevant results (a highly relevant document returned lower on the list of results
will result in a lower score than if it were higher). Resulting scores are then compared against other retrieval
algorithms including; BM25, DREM, JSR, LGCN, and MF.

Model POI Movielens Lastfm
Rec. Search Rec. Search Rec. Search
H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20

488 181 275 1703|791

574 217 330

189 1291

533 199 1339
JSR[28] 6 | 495 187 1235 4.82 2433 1068 501 1.92
BM25 [17]
DREM [2] 9.28 353 24.37

HypersaR 10.04' 3841 63171 30261 5931 2270 21870 11.04' 27.117 1238" 30.05' 14.76'

- 11.06 2.99 - - 320 1.16

1137 409 147 684 263 2345 1032 2358 1045

P 6e-7 le-6 2e-14 le-12 6e6 Se-7 le-14 4e-15 de-5 led de-T 4e8

Effectsize 630 568 5689 3372 469 648 6083 67.29 366 304 671 886

Figure 1: Example of evaluation table[1]

Thttps://grouplens.org/datasets/hetrec-2011/
2https://www.naver.com/
3https://grouplens.org/datasets/movielens/25m/

Retrieval Models

Model Used: The model used is a Hypergraph convolutional network approach for Search and Recommen-
dation (HyperSaR)[1]. HyperSaR uses undirected hypergraphs to represent connections between users,items,
and queries.This hypergraph is then used in the layered convolutional network to train the model based on

two calculated loss values.

[

LY

La

yer

Layar D | Layer 3 Final
embeddings | Layer 2 smbaddings oo
User Layer 1 matching loss
Hypergraph Hypargraph

ok
>

1

Query likelihood
kass

nade-to-hyperedge
propagation

hyperadge-to-node
propagation

Figure 2: HyperSaR Model Pipline [1]
Hypergraph convolutional network. Used for representing connections between users items and queries. Layer
1 of the model represents direct relationship interactions (listening to a song). Further layers represent
increasingly higher level, abstract relations between nodes in the hypergraph.

Hypergraph: The hypergraph used has two distinct types of hyperedges. The first hyperedge consists of a
user, an item, and at least one query. This hyperedge represents a search instance. The second hyperedge
consists of only a user and an item, without a query. This represents a recommendation instance. Once the
hypergraph is constructed, it can be turned into a binary incidence matrix, H, that has dimensions |V| x |E|,
where V is the set of all nodes/vertices, and E is the set of all hyperedges. For the element H, ,, in the matrix,
each value is either 1 or 0. A value of 1 indicates that the n-th node is connected to the m-th hyperedge, while
a 0 represents no connection.

Hypergraph
L2}
Search instances Rec. instances .~
’
(1, iy g1 =(wq, w2)) | (u2, i3) N
(w22 a2=(w2) | (w2 ig) -y | el ia
(u3, i3, 53 = (w3)) (u3, i1) el \ rec. edge
hyperedge

Figure 3: Example of hypergraph built from search and recommendation instances. Nodes u*, i* and w* denote
users, items and query keywords. [1] Nodes involving user, items and query represent a search interaction and
are 3 or more dimensions (hyperedge). Node connections with a user and item are recommendation instances
(edge). Edges within the same neighborhood are more closely related, and positions change as the model is
trained.

Convolution and embeddings: Once the incidence matrix is contructed, we can perform matrix operations
to generate embeddings and propogate them into however many layers are required. After all layers have
been constructed. Each layer embedding is decomposed back into three separate parts, (E,, E;, Ew). These
three parts represent the embedding for a user, item, and query respectively. Once decomposed, all layers are
aggregated by summing their embedding results. These embeddings are then used to calculate two different
loss functions

Loss Functions: Two separate loss functions are used, Context-Item matching loss and query-likelihood
loss. Context-Item matching sums the dot product of all embeddings together, and then uses pairwise

~ ~ 0
ST 1080(usivigs — Guing,) T MES |3

1
Bayesian Personalized Ranking (BPR) [b2] Lem = “ix]
v€X ine€T\{is}

This method weighs the difference between items the user recommends, and items that it doesn’t. The query
likelihood loss uses embeddings to ﬁnd the probability of a query given the user and the probability of a query

Z log p(w | uz) X Z Z logp(w|iz), The probabilities of
WEQ, | ‘ TEXs weEGy
all interactions are then added to give us the query-likelihood loss value. These two loss values are then

linearly combined using a balancing hyperparameter n as L = LCIM + nLQL.

given an item Lou = | X ‘ Z

MI MI

Experimental modifications: FastText embeddings (Baseline) and Pre-trained BERT Embeddings, Specifi-
cally; BERT Base and BERT Large. [3] These are used in layer O of the pipeline in figure 2.

‘ output ‘

| hidden |

Lo e | o] []

Figure 4: FastText architecture with N n-gram features [4]

FastText embeddings consists of a number of embeddings for each ngram, seperating words into character
strings. This allows it to accurately capture misspelt words or words with similar meaning. FastText takes into
account a relatively small amount of context around it. Because of this FastText may not be as effective as
other models at tasks that require a deeper understanding of semantics and the relationships between words.

(i) () (o) ()] ())))) ()

Token

Embeddings ‘E[CLS] ‘ Emy ‘ Edug ‘ Els H Ecute [SEP] | Ehe ‘Ellkas |Eplay ‘ E”mg | E[SEP]
+ + = +* = -+ -+ -+ -+ -+ -+

Segment

croeaanos | Ea] [B0][B | L6 [0] 8] [&) [6 | [0] [T6s [0]
+ + + + + + + + + + +

Position

croesanos | B] [&][& J[& [[B0 J[& [[& [& [& [[& [s]

Figure 5: Representation of BERT Token, Segment, and Position embeddings from input[3]

BERT embeddings are more complex and much more contextual. As shown in Figure 5, each embedding is
calculated in reference to a large amount of words surrounding it. Because of this BERT often is exepcted
to outperform FastText, however it is much more computationally expensive and takes much longer to train.
BERT large differs from BERT base in terms of scale, having many more transformers and parameters and can
generally undertake more complex retrieval tasks.

Experiment

Research Question: What are the effects of changing baseline pre-trained word embeddings in the HyperSaR
model in the proposed Joint Personalized Search and Recommendation task?

Independent Variable Control Variables Dependent Variables
Pre-trained word embeddings* | Dataset (LastFM) Recall@1,10,20
Weight Decay: 0 NDCG@20
Number of layers: 2 generated output/artists
Epochs: 100

Learning Rate: 0.001
Batch Size: 1024

Embedding Dimensions: 64

Number of Negative samples: 0

Number of Keywords: 2000

*Pre-trained word embeddings include: FastText (Baseline), Bert-Base, and Bert-Large pretrained
embeddings, from the hugging face transformer library* °

Hypothesis: Each of the different pre-trained BERT embeddings will affect the models’s ability to meet a
user’s needs and preferences based on their queries and recommendations (verified with recall and NDCG
scores); The more complex the pre-trained embedding, the better user needs will be met. FastText is expected
to do worse because it is the simplest model. BERT-Large will likely do this the best since it is the most complex
of the pre-trained embeddings tested.

Due to the fact that BERT embeddings store more context, like segments and positions, it should give
the HyperSaR model a more ideal set of initial embeddings. The HyperSaR model should be able to keep the
extra context and retrieve better results.

Methodology:

Implementation: The HyperSaR model is used for all iterations of experimentation. The model is consistently
run with the hyperparameters as seen in the Control Variables column in the experiment chart above.

Pre-processing: Using the LastFM dataset, features extracted are users, items, query keywords, and user-item
interactions. These features are gathered through tokenization before being converted to embeddings. To
generate embeddings, tokens were aiejrojita into the pretrained word-embedding models, which were then
stored to be used as inputs to layerO of the hypergraph neural network.

Model Training: Hypergraphs contstructed based on similar embeddings and populated into neighborhoods
of edges and hyperedges. The weights are then fed into deeper layers for higher-level connections to be found,
and then combined and used to calculate the two loss functions. After they loss is calculated, the hypergraphs
are updated and the process repeats for 100 epochs.

Scoring: In order to compare the performance for each independent variable, we use Recall(@1, 10, 20)
and NDCG@20. These are metrics are calculated by comparing generated results against a ground truth item
for each item interaction [1].

“https://huggingface.co/bert-large-uncased
Shttps://huggingface.co/bert-base-uncased

Code Changes: Although the HyperSaR code base has some existing architecture that allows for changing
embeddings, this only allows for word vector embeddings, like FastText.

Huggingface Transformer library is imported to load pretrained Bert-Base-Uncased, and Bert-Large-
Uncased

To use BERT Embeddings, The data processing code section had to be changed. The embedding function
is given a vectorizer, that contains the TF-IDF features of all tokens in the dataset. Each token in this
vectorizer is fed in as an input into the desired BERT model, and the outputted embeddings are then
stored.

Vectorizer dimension is changed to support Bert Base (768) and BERT Large (1024)
Creation of a bash make file for ease of experiment executions.
Option parsing file changed to allow for specification of embedding to be used.

Evaluation file modified to print out an example search and retrieval case.

Results and Discussion

After running the HyperSaR model using the three different embeddings, all metrics were recorded and
reported in the tables below. Table 3 records a combination of both search and recommendation instances.

Embedding R@1 R@10 R@20 NDCG@20
FastText 0.05425 0.21901 0.29928 0.14620
BERT Base 0.05455 0.21835 0.29843 0.14596
BERT Large 0.05548 0.21988 0.29685 0.14665
Table 1: search metrics. Best Model in bold
Embedding R@1 R@10 R@20 NDCG@20
FastText 0.03880 0.19036 0.27065 0.12423
BERT Base 0.03819 0.19217 0.27032 0.12374
BERT Large 0.03946 0.18822 0.26757 0.12293
Table 2: Recommendation metrics. Best Model in bold

Embedding R@1 R@10 R@20 NDCG@20
FastText 0.04912 0.20949 0.28976 0.1389
BERT Base 0.04913 0.20919 0.28934 0.13864
BERT Large 0.05016 0.20936 0.28712 0.13877

Table 3: both search and recommendation metrics. Best Model in bold

Observations: The recorded metrics for all embeddings are extremely similar, with the largest difference
under 1%. This implies that embeddings didn’t have a large impact on the effectiveness of the HyperSaR model.
These results contradict our original hypothesis that the BERT Embeddings would increase the effectiveness.
There are a few possible reasons why we received these results.

1. The BERT Embeddings do not add any value compared to FastText embeddings.

This is the least likely reason because BERT embeddings are known to add more context than
FastText embeddings. This includes more context based on passages as a whole, instead of each
word.

2. The HyperSaR model does not utilize or require complex embeddings for better performance.

Because the HyperSaR model uses both search and recommendation instances, and heavily utilizes
connections between items inside of it’s hypergraph, the initialized embeddings may not influence
the model as much compared to others. Recommendation instances don’t even use a query that the
embeddings are used on, and the hypergraph generation doesn’t use embeddings. We suspect that,
although an embedding is necessary, this model does not fully utilize more complex embeddings
like BERT.

3. The Lastfm dataset does not have many large phrases to properly utilize the larger context of BERT
embeddings.

This is likely the the largest reason why results were so similar. A search item is defined as a user
tagging a song. These tags are usually one word terms, like ”Pop”, or "Rock”. The larger context
that BERT embeddings supply are lost on these simple tags.

Generated Output: To get a better idea of how the different models generate different output, a specific
user and set of keywords were given to the model, and generated outputs were recorded. This output came
from user 213, and the keywords given were 'burnap’, 'carrie underwood’, "pure aural sex’, 'fucking awensome’,
"darkwave’, and ’silent intensity’.

Embedding Generated output

FastText 'Timbaland’, ’'Blue’, ’Girls Aloud’, ’S Club 7’, ’Sean Paul’, ’Joe
McElderry’, 'Nelly Furtado’, "Will Smith’, ’Pharrell’, Jesse McCart-
ney’

BERT Base "Christina Aguilera’, 'Kelly Clarkson’, ’Jonas Brothers’, 'Lindsay
Lohan’, '"Metro Statior’, ’Girls Aloud’, ’Ashley Tisdale’, 'Leighton
Meester’, "High School Musical’, "Justin Bieber’

BERT Large | ’Ashley Tisdale’, 'Girls Aloud’, "Joe McElderry’, 'High School Musi-
cal’, 'Rihanna’, 'Paris Hilton’, 'Rachel Stevens’, 'Kelly Clarkson’, ’Aly
& AJ, 'The Saturdays’

Table 4: ordered list of artists by relevance for user 213 given the same keywords

This table reveals that different embeddings do change the behavior of the model. This example is a
fairly extreme one, with many specific keywords. Because of this, the models have more chances to distinguish
themselves from each other. There are some common artists between models, like "High School Musical”, and
”Girls Aloud”, but each model ranks them differently, and many ranked artists are unique. This tells us that
embeddings do impact generated output.

Future Work: Future work entails establishing a proper dataset with context that would likely establish a
clear answer for our hypothesis. In this case it failed to support or reject the claim clearly. Out of the three
datasets in the paper, the Point of Interest Search engine Naver would be the most ideal, but unfortunately,
MovieLens and Lastfm were the only two that were readily available. Both of which use tagging as a search
interaction. Given this, we would need to find another compatible dataset, or process our own. This new
dataset would include more complex searches and items that are more like the data that BERT embeddings are
trained on. Some possible candidates are social media website like twitter, reddit, etc, or web fiction websites
like Royal Road. This model could even be extracted to video hosting sites like Youtube, where search and
recommendation interactions are more clearly defined.

References

[1]

(2]

(3]

(4]

Thibaut Thonet, Jean-Michel Renders, Mario Choi, and Jinho Kim. 2022. Joint Personalized Search and
Recommendation with Hypergraph Convolutional Networks. In Advances in Information Retrieval: 44th
European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10-14, 2022, Proceedings,
Part I. Springer-Verlag, Berlin, Heidelberg, 443-456. https://doi.org/10.1007/978-3-030-99736-6_30

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from
implicit feedback. In: UAI, pp. 452-461 (2009)

J. Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,”
ArXiv.Org, 2019. Available: https://ezproxy.rit.edu/login?url=https://www.proquest.com/working-
papers/bert-pre-training-deep-bidirectional-transformers/docview/2118630252/se-2.

Armand J., Edouard G., Piotr B., Tomas M.: ”"Bag of Tricks for Efficient Text Classification” ArXiv.org,
2016. Available: https://arxiv.org/abs/1607.01759.

	Retrieval Task
	Retrieval Models
	Experiment
	Results and Discussion
	

