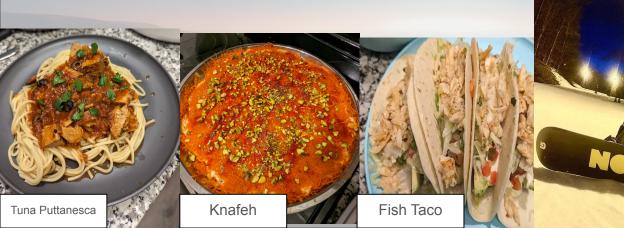
Exit Presentation

Conor Gagliardi EV311 S.U.I.T.S. Intern

Fall 2023

Mentors: Geraldo Cisneros, Adam Peterson

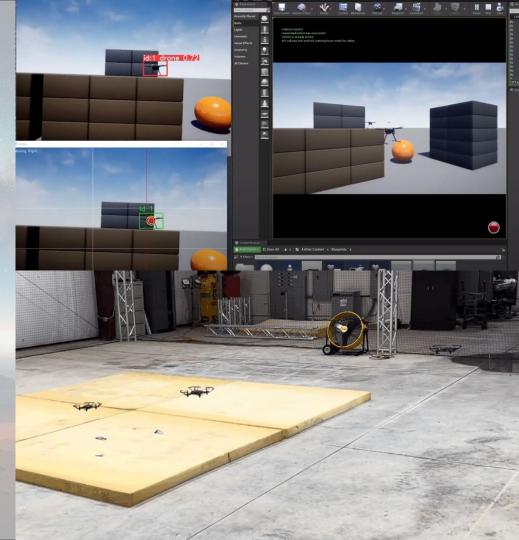
About Me


From Waterford, New York Senior Undergrad at RIT -

Computer Science

Intelligence Analyst in NY Army National Guard

Houston RenFair - goblin


Why I'm Here

Interested in autonomous robotics, particularly in space exploration applications

Post deployment, did independent studies with robotics, as well as a part-time job as a computer vision engineer

Eager to pursue a PhD and research perception and control for autonomous systems

SUITS in brief

Spacesuit User Interface Technologies for Students (SUITS)

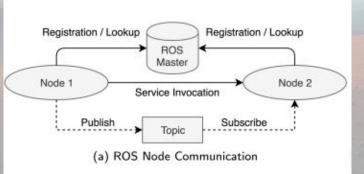
- Design challenge for national college students
 - Augmented reality heads up display and local mission control
- Eleven teams are selected to demonstrate their designs on a test week in May
- Their designs are meant to showcase capabilities of augmented reality in making crews more autonomous and efficient
- 2024 SUITS is a Mars EVA instead of Lunar as requested by EVA Human Surface Mobility Program (EHP)
- This year also features two simultaneous EVAs and LMCCs running at the same time
 - Designers can demonstrate collaboration possibilities

What I'm doing here

- Facilitating the Spacesuit User Interface Technologies for Students (SUITS) design challenge.
- Tasked with ensuring autonomous functionality of a rover for use in the SUITS EVA test week.
 - Subtasks include setting up manual control via joystick, LIDAR integration, web servers for streaming telemetry data including the rover's position, video streams, and RGB-D streams.
- Additionally tasked with building Maps for the simulated Mars terrain field (rock yard) and voice communications for participants with the Local Mission Control Center (LMCC)

Rover

Goal: Autonomous navigation, QR scanning for sample detection, and manual control


- Using a Leo Rover which has a Raspberry Pi for processing
- Components include RealSense RGB-D camera and RPLidar
- Additionally uses a kill switch button for safety and redundant batteries for changing during use.

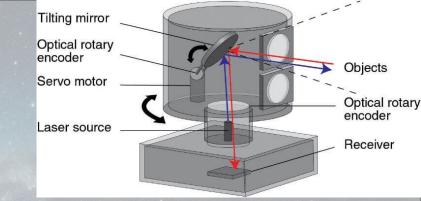
Robot Operating System (ROS)

- Allows for simple prototyping and deployment of robotics applications
- Uses Nodes (executable files) meant for specific tasks
- Nodes communicate to each other through topics and services
- Nodes can publish to topics, and subscribe to them
- Services allow nodes to request and receive information

Robot Operating System

Joystick Control

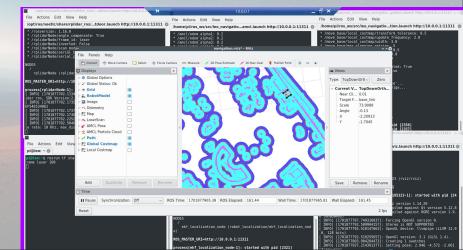
- Used Ubuntu on a virtual machine for ROS over a network
- Rover Subscribes to the topic "cmd_vel" for movement commands
- One of the tasks in the SUITS challenge is manually controlling the rover.


LIDAR


Light Detection and Ranging

• RPLidar A3

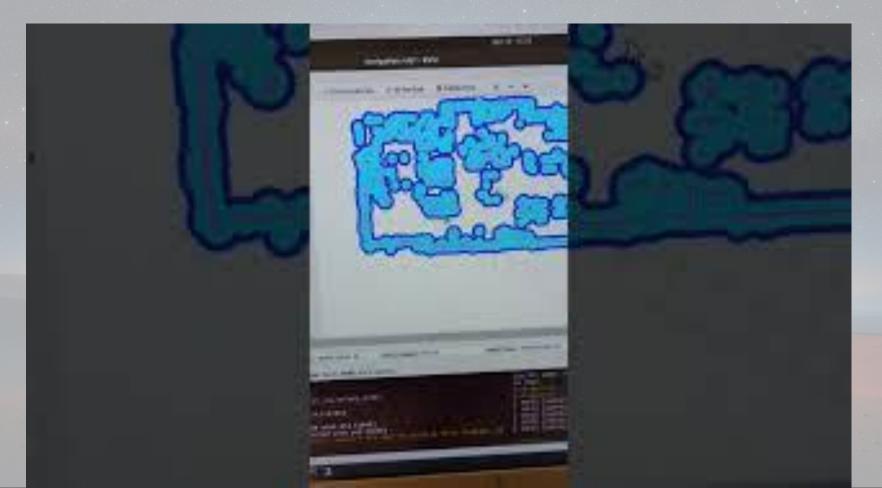
- 10k Samples per second
- 10Hz rotation speed
- 20 meter scan range


(D=distance C=speed of light T1=Emission time T2=Receiving time)

Setting Up Autonomous Navigation

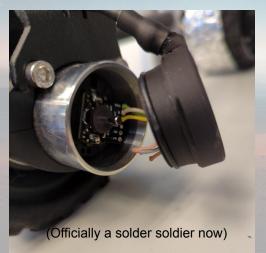
Autonomous navigation requires launching:

- Lidar
 - To build a pointcloud for map generation and/or localization
- Odometry
 - Using an Extended Kalman Filter to estimate position
- Map generator / loading prebuilt map
 - To gain context of surroundings
- Costmap Generator / Route planner
 - To find the safest "lowest cost" route to a destination



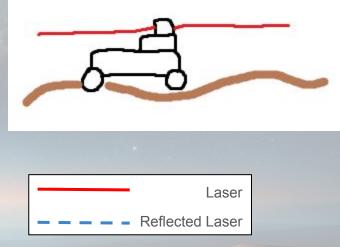
Testing Autonomous Navigation

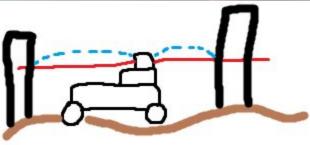
Learning to Solder


Previous experience with Jewelry making

Took a safety course in the HIVE lab proctored by Briana and Paromita

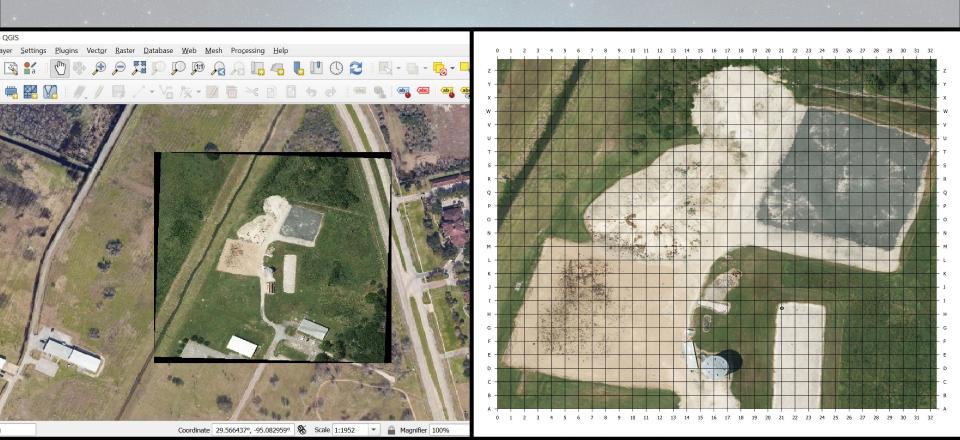
Communicated with Leo Rover Devs to find the best solution


Challenges in Outdoor Testing


- Sunlight with lidar
- Flat terrain and sloped terrain with lidar
- IMU difficulties with sliding rocks
- Using Prebuilt Maps based off of Satellite Imagery caused problems with expected vs actual distances.

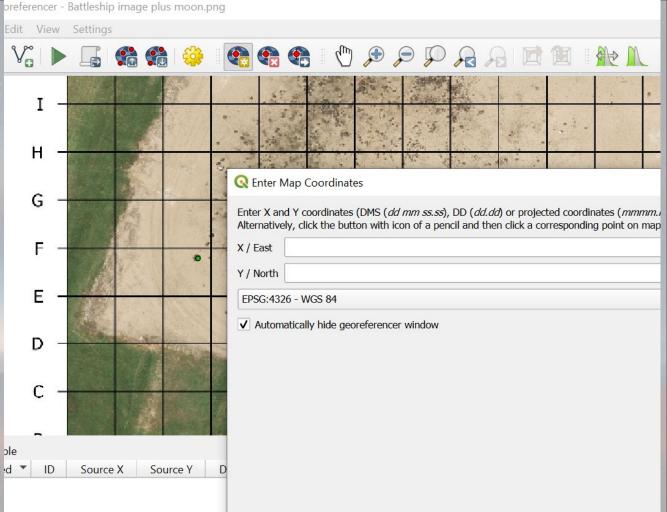
Overcoming the Challenges of Outdoors

- Two-Dimensional Lidar is not very useful without a vertical reference to localize from.
 - To make up for this we Plan on using markers so that it does not have to solely rely on Inertial Measurement Unit (IMU) odometry data.
- Additionally, with excessive sunlight, the laser signal is washed out causing artifacts in the laserscan data.
 - To make up for this, the LIDAR running mode was changed from sensitive to stability which works better in an outdoor environment



Overcoming the Challenges of Outdoors

- For the IMU a different package can be used that is meant for Uneven terrain
 - This wasn't required in the lab because the floors are level and solid.
 - Retesting the rover using this setting improved its self localization on the map.
- For the prebuilt map size, a manual mapping will be required.
 - Before testing the rover can be drove around manually and gather environmental context to create a point cloud map which can later be referenced during autonomous navigation.


Maps Goal: Georeference the rockyard and Produce a tessellated grid map that can be referenced through GEOJSON files.

Maps Cont		
Project <u>E</u> dit <u>V</u> iew <u>L</u> ayer <u>S</u> ettings <u>P</u> lugins Vect <u>o</u> r <u>R</u> aster <u>D</u> atabase <u>W</u> eb <u>M</u> esh Pro <u>c</u> essing <u>H</u> elp		
🗋 📄 🔒 🔀 🐒 👔 👘 🏘 🗩 🔎 🧏 🖗	ν 🔏 🖓 🖫 🧠 🗓 🖤 🍣 🔣 - 🖻 - 🔂 - 🗣 - 🔍 🚟 🔆 Σ 🗐 - 💳	• 🖓
🍕 🎕 Vi 🔏 🖏 🎇 🕼 🖉 // - Vi 🔭 -	- 22 📅 -> 12 12 49 14 14 14 14 14 14 14 14 14 14 14 14 14	2
Layers		
	Q Create Grid	
✓ — battleship image plus moon grid		
 → battleship image plus moon_mo mit ✓ I Mattleship image plus moon_modifie 	Parameters Log	
Band 1 (Red)	Grid type	-
Band 2 (Green)	Line	•
Band 3 (Blue)	Grid extent	
□ — Grid □ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	1	- 2
 ▶ Grid ₩ marked B&w modified 	Horizontal spacing	
Band 1 (Red)		•
Band 2 (Green)		
Band 3 (Blue)	Vertical spacing	
— battleship image_modified grid 💭 t	1.000000 🗘 meters	•
 Band 1 (Red) 	Horizontal overlay	
Band 2 (Green)	0.000000 🌩 meters	•
Band 3 (Blue)	Vertical overlay	
▼ 🗸 👔 jsc2020e034992_modified	0.000000 meters	•
Band 1 (Red)	Grid CRS	
Band 2 (Green) Band 3 (Blue)	EPSG:3857 - WGS 84 / Pseudo-Mercator	
Band 3 (blue)		

Maps Cont...

Participants must be able to drop pins and waypoints using the 2d map as well as interact with it on the head mounted display (HMD) using geo-data embedded into the map

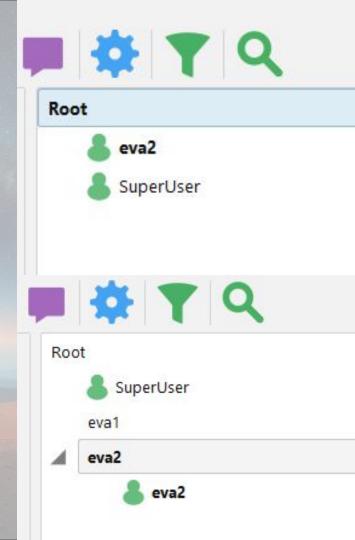
Voice Comms

Goal:

- Create voice communication channels which design evaluators can communicate with LMCC
- Additionally, provide capability for evaluators to change voice channels via a switch on their Display Control Units (DCUs)
- Communications are simulated to go through a Comm Tower that will be on site during test week.

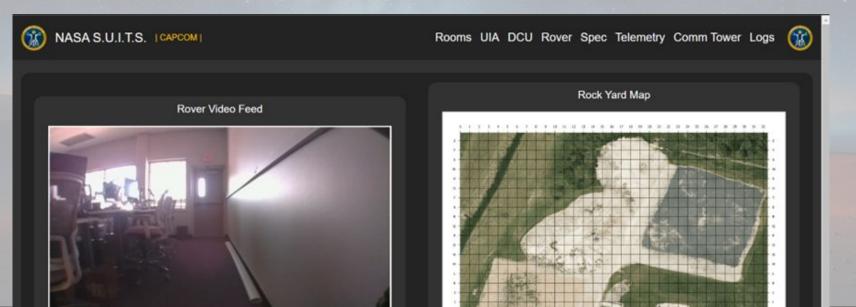
Mumble

- Open source voice over IP (VOIP) software
- Has Python API with raspberry pi support
 - By using the API we can integrate voice communication software seamlessly into the DCUs for the design evaluators without any necessary input from users.


Mumble Clients

- A switch on the DCU is designated to switch channels from main to local.
- Onboard the Raspberry Pi, a program runs which communicates with the Mumble server and provides capability to swap voice channels based on comm tower availability.

Comm Tower


- The Comm Tower is an event during the EVA that will cause local communications to go down and require the design evaluators to "repair."
- This event will cause the one-to-one channels on the Mumble server to go down simulating a real communication failure.

Telemetry Stream

To the Telemetry Stream, I provide:

- Webserver on the LeoRover which streams the onboard monocular camera footage and the RGB-D mounted camera footage
- Position updates based on an x y occupational grid
- Updates when the rover scans a QR code representing a discovered sample

Grading and Evaluating Submitted Proposals

Reviewed and scored half of the SUITS proposals which was used in deciding final selections

Among the parts evaluated are:

- Design Description
- Concept of Operations
- Feasibility
- Effectiveness of Proposed Schedule
- Human-In-The-Loop (HITL) Testing
- Technical References

The practice in evaluation will be helpful as I pursue a graduate degree and have to think objectively and critically of others' work

What I've Learned

- Ubuntu / Linux
- Robot Operating System (ROS)
- Raspberry Pi development
- LiDAR usage
- Soldering
- Mapping / GEOJSON
- Python, C, and javascript programming
- Websockets
- Unity Development

PIPE/SCUM intern activities

Astronaut Chair on the Tours and Lectures committee

- Johnny Kim Lecture
- Set up an astronaut lecture date for early Spring to make up for the buffer in the start of PIPE/SCUM

Wrapping up the internship

Working on a Demo program for the Microsoft Hololens 2 using Unity that can connect to our TSS and display sample data.

Will be on site during the spring to help with Test Week

Future Plans

In spring, I will be doing another internship in EG2 working in the Simulation, Emulation, Navigation, Sensors and STAR (SENSS) Laboratory, working on Guidance Navigation and Controls projects using ROS

I will also be pursuing a PhD in autonomous Robotics. I hope to study at Caltech and do research in JPL on collaborative robotics swarms and their applications in space.

Acknowledgements

A big thanks to...

Michael Lankford

Geraldo Cisneros

Adam Peterson

Dillon Fisher

Paromita Mitra Nicholas Davis James Semple Briana Krygier

Cory Simon

And you, the viewer!

