
EMG Controlled Drone Simulation
Conor Gagliardi

Kate Gleason College of Engineering
Rochester Institute of Technology

Rochester, New York, USA
cgg3724@rit.edu

Aharon Sebton
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York, USA

ams9265@rit.edu

John Pesarchick
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York, USA

jfp1222@rit.edu

Abstract—Today, electromyography (EMG) and inertial mea-
surement unit (IMU) readings collected from wearable sensors
see a wide variety of applications in robotic systems. These
include applications for rehabilitative assistive robots and control
systems for robotic manipulators. However, there is less focus
on EMG-based control for unmanned aerial vehicles (UAVs).
Additionally, limited research has been conducted on control
schemes that utilize EMG and IMU measurements together
in decision making. This paper examines the fusion of these
two data types using several methods of classification. A novel
drone control scheme is implemented around these classifiers and
tested using Flightmare simulator in a ROS environment. Sensor
readings are obtained from a Thalmic Labs Myo Armband.
Using EMG and IMU features concurrently aided the accuracy
of a support vector machine (SVM) classifier. A cascaded neural
network using separate classifiers for the two feature types first
provided an increased accuracy. However, the SVM deployment
to real-time gesture classification did not provide a usable control
scheme.

Index Terms—EMG, IMU, Myo, SVM, NN, LSTM, Data
Fusion, UAV, Classification, Drone, Simulation

I. PROBLEM STATEMENT

The objective of this project is to enable the control of
an unmanned aerial vehicle (UAV) through human gestures.
These gestures are recorded through a combination of human
electromyography (EMG) signals and accelerometer data pro-
vided through a wearable sensor package. Machine learning
is employed on these data types to classify a finite number of
human gestures that serve as commands to the UAV. Proper
classification of these two signal types will allow for a simple
and intuitive method of input. Currently, extensive research
has been completed on the applications of EMG and inertial
measurement unit (IMU) signals to various types of robotic
control. However, there is limited research on methods that
combine these two signal types in formulating commands, es-
pecially for UAVs. This project seeks to use machine learning
methods to combine these signals together to form more robust
gesture classifications and thus a higher classification accuracy
compared to existing gesture-based control implementations.
This combination is referred to as data fusion.

This paper begins with a presentation on the state-of-the-art
in data classification methods and various forms of gesture-
based control for robotic systems. Following this, the theory
behind the novel data fusion of IMU and EMG signals is

explored. Next, the testing methodology used to validate the
classifier design is presented in detail. Finally, primary results
are presented and discussed.

II. LITERATURE SURVEY

A literature survey was conducted for the purpose of learn-
ing how physiological signals have been applied to different
control systems in recent years. Sources were selected for
review based on the signals collected (EMG and/or IMU), the
robot or vehicle intended to be controlled, and if a data fusion
method was introduced. Signal preprocessing techniques, ex-
tracted features, machine learning methods and their respective
accuracies were noted.

EMG signals were recorded or borrowed from publicly
available sources for hand and arm gesture classification.
Different filtering techniques were applied to these signals
for de-noising purposes, including a band-pass filter [2] [6]
[7] [9] [16] [17] [19], notch filter [4] [6] [7], Kalman filter
[12], Discrete Wavelet Transform (DWT) [9] [14], Wavelet
Packet Transform (WPT) [18]. The Fast Fourier Transform
(FFT), Discrete Cosine Transform (DCT), DWT, Continuous
Wavelet Transform (CWT), and WPT techniques were also
used to prepare the signals for feature extraction [9] [13] [18]
[23]. Some sources reported applying additional preprocessing
techniques such as smoothing filters, rectification, and linear
interpolation [13] [16] [19]. Features that were extracted
from these preprocessed EMG signals varied. Some sources
chose to manually extract human-interpretable features with
a mathematical basis, such as mean [3] [13] [23], standard
deviation or variance [2] [8] [10] [12] [13], integral or area
under the curve [2] [8], root mean squared (RMS) [3] [6]
[7] [10] [14] [17], mean absolute value (MAV) [14] [17],
slope sign change (SSC) [14] [17], wavelength [3] [10] [17],
maximum voluntary contraction (MVC) [6], Willison ampli-
tude [10], myopulse percentage rate (MYOP) [15], average
amplitude change (AAC) [15], zero crossing [17], minimum
value and maximum value [10], and skewness [17]. Others
used libraries to obtain a large pool of features, then applied
a machine learning method to reduce the feature space to the
most critical/relevant selections. There were also a handful
of sources that chose to feed their preprocessed data directly
into their machine learning model under the assumption that
it would learn distinguishable features of each gesture on its



own. Sources that collected IMU data tended to manipulate the
data by calculating Euler (roll-pitch-yaw) angles [11] [12] or
calculating a few measures like mean and standard deviation
of the signal [13] or angle of deflection of the wrist [15] [?].

It was discovered through this literature survey that ma-
chine learning models like Artificial Neural Networks (ANN),
Support Vector Machines (SVM), Long Short Term Memory
(LSTM), k Nearest Neighbors (KNN), Convolutional Neural
Networks (CNN), Hidden Markov Models (HMM), and Gausi-
ian Mixture Models (GMM) achieved high accuracies on their
respective testing datasets. Additonally, data fusion methods
such as fusion between sensor readings, cascaded SVMs or
even fusion of different signal types consistently improved
results.

There is currently limited research on the subject of control
schemed based on concurrent EMG and IMU measurements.
Most robot control systems explored in the literature use EMG
or IMU data exclusively. This is especially true for UAV
applications, of which there are few. Therefore, this project
seeks to implement a novel control scheme for UAVs using
the fusion of EMG and IMU data. It is proposed that the
combination of these data types will allow for more accurate
gesture classifications and thus a more robust control system
than those seen in the literature.

III. METHOD

Please read sections III-A–III-C below for more information
on how data was collected, an explanation of the proposed
approach, and an explanation of the result validation process.

A. Dataset

EMG and IMU data are collected using a Myo Armband.
This wearable device features eight gold-cup electrodes that
allow for the non-intrusive collection of EMG signals from
a wearer’s forearm. This allows for eight data channels.
Additionally, the Myo Armband contains an internal IMU that
can record orientation and acceleration data. A sampling rate
of 200 Hz is used for all measurements. This is an adequate
frequency for EMG measurements, since EMG signals typi-
cally fall within a range of 8-25 Hz. The device is connected to
a lab PC via a Bluetooth interface. From there, measurements
can be observed and saved using LabRecorder software.

A total of fifteen arm/hand gestures are classified to pro-
vide a list of commands to a drone. These gestures include
making a fist, bending the wrist left or right, and moving the
arm inward or outward. To meet this end, training data is
collected from each member of the research group. Each of
the fifteen gestures is repeated five times and labelled to enable
supervised learning. Each repetition lasts about three seconds.
An additional set of gestures was collected by one member,
leading to a total of 300 samples altogether.

B. Methodology

Based on examples set by the literature survey, pre-
processing of the collected EMG data is necessary for it to be
useful for classification. To meet this end, the collected signals
are sent through a bandpass filter with a passband of 20-95 Hz
and then a notch filter centered at 60 Hz. Rectification takes
place between the two filter stages.

Several metrics are extracted from the collected and filtered
data. For EMG measurements, the maximum, average, and
standard deviation for each channel is calculated to start.
Additional EMG metrics collected include RMS, waveform
length, MAV, and maximum deviations. Additionally, the
maximum power of each channel is determined using the
periodogram method of the scipy Python library. For IMU
data, the maximum deviations in the X, Y, and Z directions
are determined along with the standard deviation in each
orientation. Additionally, the range in gyroscope readings
for all three directions is calculated. Lastly, the maximum
acceleration in each direction is collected.

Based on the literature, several classification methods are
viable for use in recognizing a finite set of gestures. These in-
clude SVM, LTSM, Neural Networks, and K-means clustering.
The first method to be utilized is an SVM. The Python package
sklearn is used to implement this supervised algorithm. To
assist with classification across 15 groups, a linear kernel is
employed, and a principal component analysis with an explain
variance threshold of 0.9 is included in the classification
pipeline.

The LSTM is implemented as follows; first the data is
separated into EMG and IMU train test splits. Then it is
preprocessed as previously discussed. Two separate LSTMs
are created for each set, with an LSTM layer, and two
dense layers each before a final dense layer for classification
extraction. A third dense layer model is created to join the
two separate LSTMs before their classification steps and is
also trained. The rectified linear activation function is used
inside the networks. Adam is the optimizer used in training.

Two different neural networks are created to examine the
concept of data fusion. The first uses EMG and IMU features
together as inputs to a single network whose parameters
are shown below by Figure 1. The fifteen output nodes are
corresponding to the fifteen different gesture classes. This is
compared to a more complex model that learns EMG and
IMU features separately with two separate branches to produce
a total of 64 output nodes. These nodes then serve as the
input layer of a third neural network, referred to as the fusion
classifier. The fusion classifier has fifteen output nodes, one
for each gesture in a similar manner to the original neural
network. This fulfills the task of data fusion in a manner
similar to the LSTM presented above. The architecture of this
cascaded network is shown below by Figure 2. Both networks
use intermediate dropout layers are trained using an 80/20 test
spit. Confusion matrices are used to gauge accuracy.



Fig. 1. Simple neural network classifier architecture

C. Validation

The proposed data fusion method is tested using a simulated
environment integrated with Robot Operating System (ROS).
A model for a UAV will be controlled in a virtual 3D space
by the system discussed in this paper. Success is measured
by classification accuracy, reliability over time in a single
session (i.e. consistency of operation), and overall ease of use,
which can be quantified through tallies such as the number of
collisions observed within the environment.

Different forms of validation are performed for the different
proposed machine learning algorithms. For the SVM, the
Leave One Group Out cross-validation method is employed.
This process splits the training and test data such that each
training set has samples from all but one of the classes to
be evaluated. This helps prevent bias in the evaluation of a
model during validation. Model accuracy is accessed using
a confusion matrix, which visually shows the frequency of
predicted values against their corresponding true values. The
accuracy of the SVM will be gauged using EMG features
exclusively, then IMU features exclusively, and finally both
types of features together.

Note that the models presented in this paper are designed
to work with the features defined thus far. Therefore, they are
subject-specific.

The package rosmyo is obtained and modified to allow the
Myo armband to interface with ROS. This package contains a
script, myo rawNode.py, that opens communication to a Myo
Armband through a USB Bluetooth dongle and publishes raw

Fig. 2. Fusion neural network classifier architecture

EMG and IMU readings to ROS at a rate of 200 Hz. The
ROS topics these readings are published to are /myo emg
and /myo imu, respectively. Classification is performed by
the program myoOutput.py. This program subscribes to these
topics. On each reception, EMG and IMU readings are stored
to separate pandas dataframes. A variable limits the number of
samples that are accumulated in these dataframes. When either
data type reaches this maximum, its respective dataframe is
no longer recorded to. When both data types have reached the
maximum limit of collections, the two dataframes are merged
into one, and feature extraction takes place. Afterwards, clas-
sification can be performed using a vector containing the
feature values with the same order as that used in training
the classifier.

The Flightmare simulator can be used with custom launch
files that specify specific behavior for objects within it. In
this case, a C++ program is called that subscribes to the
/COMMAND topic and moves a simulated drone according to



Fig. 3. ROS network for the real-time classifier

a series of pre-defined movement sequences. The drone will
move according to one command until another is received,
which replaces it. For example, if the user makes a move that
is classified as ”forward,” the drone will move forward until
the next classification is made from the user’s next gesture. A
plot of all relevant ROS topics and nodes is shown by Figure
3.

It is expected that the method of data fusion examined in
this paper will allow for higher classification accuracy than
with classification using EMG or IMU signals alone. The high
classification accuracy of the system will allow for a UAV
control scheme that is simple, consistent, and intuitive.

IV. RESULTS

A. SVM Classification Accuracy

The SVM is established and evaluated according to the
details outlined in Validation. When using EMG features
alone for classification, a 49% accuracy was achieved, with
best results seen for the rotate and twist motions. when
using IMU features alone for classification, a 58% accuracy
was achieved, with best results observed for the lateral arm
movements (e.g. ”up” or ”left”). The highest accuracy of
75% was achieved when using both EMG and IMU features
together. The confusion matrix for this case is shown below
by Figure 4. The SVM performs well with most gestures but
often fails to identify members of the ”left,” ”resting,” ”rotate
left,” and ”up” classes.

B. LSTM Classification Accuracy

The LSTM model was overall unsuccessful in the classifi-
cation task here. This is due to the nature of feature extraction
we chose. The features extracted were based on statistical
extractions from each EMG file. This is not conducive to a
temporal learning model. In a majority of cases, the model
failed to converge, shown by the training and test loss curves
in Figure 5, and if it did, its results were near random-chance
guessing.

C. NN Classification Accuracy

The simple NN described by Figure 1 is trained and
tested for classification accuracy. This network reached a test
accuracy of 90%, as shown by the confusion matrix in Figure
6. The fusion NN shows an increased test accuracy of 95%,
as indicated by Figure 7.

D. Real-Time Classification Accuracy

Based on the results of the individual classification pro-
grams, the SVM classifier was selected to test the real-time
classification process. Despite reaching a 75% classification
accuracy in isolation, poor performance was observed in real-
time testing. The system overall worked as intended; the user
makes gestures upon receiving prompts from the terminal,
and classifications are made each time. The simulated drone
is able to be commanded by the classification results and
move accordingly. However, classification accuracy in this
setup was generally very low. The classifier could often
distinguish larger arm movements from wrist rotations, but the
directions associated with both types of movement were more
often incorrect than correct. For example, an arm movement
upwards would always be classified as a downward movement,
and a wrist rotation downward would usually be classified as
to the left or to the right. As a result, the drone in simulation
was nearly impossible to properly control. To quantify this
issue, each of the 15 gestures was repeated 5 times with the
real-time classifier running. Out of these 75 trials, 21 trials
were correct, leading to a test accuracy of 28%. A detailed
breakdown of these trials is shown below by Table 1.

Fig. 4. Confusion matrix for the SVM classifier



Fig. 5. Loss over time for the LSTM

Fig. 6. Confusion matrix for the simple NN

Fig. 7. Confusion matrix for the fusion NN

Fig. 8. Simulated drone in Flightmare.

Gesture Number of
Correct Clas-

sifications
(/5)

Most
Common

Mis-
classification

back 2 rot. right
down 5 N/A
fist 0 rot.up/down

forward 3 rot. right
left 0 stop

right 0 twist right
resting 1 right

rot. down 0 rot. left
rot. up 5 N/A

rot. right 0 rot. left
rot. left 0 rot.up/down

twist left 0 rot.right
twist right 5 N/A

stop 0 rot. left/right

V. DISCUSSION

A. Model Architecture and Accuracy

Of the three models proposed, SVM, and NN were deemed
sufficient to continue to real-time testing. A real-time imple-
mentation was created for both of these models, but only
the one for SVM was tested in real-time. The LSTM model
was not conducive to the non temporal nature of the statis-
tical feature extraction, and was therefore inconsistent in its
functionality. The SVM showed greater accuracy when using
more features from both senor types, as expected. However,
it still failed to reliably classify all of the gestures. The
fusion NN outperformed its simpler counterpart marginally
and is competitive with the state-of-the-art. This is an expected
result. To obtain better results that would more substantially
support the hypothesis, it would be essential to get an extensive
training set for data. Additionally, a more exhaustive approach
to feature extraction would be used, testing not only statistical



methods, but also attempts at extracting from raw data. By
learning on raw data, the models would also likely be able to
generalize patterns over a continuous input feed for a single
gesture.

B. Real-Time Classification

The performance of the real-time classifier discussed in
Results fails to prove the hypothesis of this project. There
may be a several reasons. The first may be inconsistencies
in numeric values between myo-rawNode and the LSL-based
program used to collect the training data from a Windows
environment. It is certain that raw EMG values were used
in both cases, but some differences in IMU readings may
be present, leading to erroneous classifications. Further in-
vestigation is needed. Additionally, the number of iterations
collected for each live classification may not reflect the average
number used in training, leading to further differences in the
extracted features. If this experiment were to be repeated,
the training samples should be more carefully regulated to
a specific time span as to keep the number of entries in each
sample consistent. The second may be differences in how
the Myo was worn and used between the sessions used to
procure training data and the sessions used to test the real-
time classifier. Inconsistencies in sensor placement and gesture
execution could also lead to unexpected classifications. The
effects of these should also be investigated. Finally, latency in
ROS may prevent data from being received at a rate of 200 Hz,
preventing important features from being captured or leading
to distorted filtering results for the live EMG signals. However,
some of the incorrect results can be directly attributed to the
model itself. It was seen from the confusion matrix of the SVM
that gestures such as ”up” were never correctly classified in
its initial testing, so naturally such gestures would rarely, if
ever, be classified correctly during the run of this program.
This may in turn be due to a lack of model optimization or
an adequate number training samples.

VI. CONCLUSION

This project sought to develop a novel control scheme for
UAVs using a combination of EMG and IMU data obtained
from a wearable sensor pack. It was expected that using these
two types of data concurrently with machine learning methods
such as LSTM neural networks and support vector machines
would allow for classification accuracy higher than that found
in the current state-of-the-art. This high accuracy would help
realize a 15-class control scheme based on gestures of the
arm and wrist. An SVM benefited from the usage of features
extracted from both types of data, but did not reach competitive
accuracy. Furthermore, this algorithm was shown to be largely
inadequate when deployed to the task of making real-time clas-
sifications, though there may be other factors, as discussed. A
novel fusion neural network increased classification accuracy
slightly and was competitive with the state-of-the-art. Overall,
this project examined classification methods using data from

multiple types of sensors simultaneously in response to limited
research on this topic. Greater contributions may be possible
with greater amounts of training data, model optimization, and
control in experimental procedures.
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